跳到主要內容

日本商務出差指南:成功經營與文化禮儀的關鍵策略

我想分享一些寶貴的建議給那些首次來日本出差的商務人士。日本商業環境有其獨特性,理解並遵循這些規範對於商務成功至關重要。 首先,準備充分是成功的關鍵。在日本經營業務,您需要具備三大基本要素:流利的日語溝通能力、深入的日本文化理解,以及對日幣使用的熟悉。這些不僅有助於日常交流,也是展現尊重和專業的重要方式。觀察大型國際公司如亞馬遜和Google在日本的運營,您會發現它們如何通過完全本地化來達成成功。 其次,了解日本的商務禮儀至關重要。在冷天進行商務拜訪時,您應該在進入會議室之前脫掉大衣,這是表達尊重的一種方式。日本的商業環境非常重視細節和禮節,這種小動作可以顯示出您對日本文化的尊重和適應。 當安排會議和餐廳預訂時,一定要提前確定人數和參與者的身份,並盡量避免臨時變更。日本公司和餐廳通常會根據預先提供的信息準備相應的座位和飲料。突然的更改會給對方帶來不便,並可能影響您的專業形象。 在商務會議上,獻上伴手禮是一個美好的傳統,通常會在會議結束時進行。這不僅是一種禮節,也是表達感謝和尊重的方式。 談及飲食,請注意日本便當通常是冷食。在寒冷的季節,選擇便當時最好避免選擇容易因冷卻而質地改變的食物,比如燒烤牛肉。 在初次商務交流中,日本公司通常會專注於建立相互認識,交流現有能力和需求。在尚未建立合作和信任基礎的情況下,對於新合作想法或非傳統業務模式,他們可能會持保守態度。因此,在提出新想法時,準備一份完整的PPT提案會更顯專業和周到。 最後,請記住,日本是一個高度重視信用的社會。一旦建立了信任,就能獲得更多的便利和彈性。這些知識和建議將幫助您在日本的商務旅程中取得成功。

Midjourney 的繪師、藝術家、設計師風格整理

人物

Craig Mullins


Magali


cory loftis


fenghua zhong


Ross Tran


Huang Guangjian


Charlie Bowater


Artgerm


Zdzisław Beksiński


Junji Murakami


Sharandula


Peter Mohrbacher


Studio Mappa


Hiroshi Yoshida 吉田博


Tom Bagshaw


很多人會只打姓,但如果你只打 Bagshaw,就會變成這樣


Shinkai Makoto / 新海誠


Eugène Samuel Grasset


José Villarrubia


Alex Flores on Artstation


Rebecca Guay


Edward Hopper


Norman Rockwell


Aubrey Beardsley


JC Leyendecker


Studio Trigger


Nekro


Jesper Ejsing



Fuji Choko


Maxfield Parrish



Zdzislaw Beksinski



Zdzisław Beksiński 歐洲不少語言其實有之外的符號,打原文有時候出來的東西也會有細微差異



同樣的,只打 Beksinsky 風格與原來完全不同



Greg Rutkowski





James Jean


N. C. Wyeth



Jules Cheret


套疊

風格相近的畫風套疊會有這樣的效果

Tom Bagshaw + Hiroshi Yoshida


Tom Bagshaw + Hiroshi Yoshida + Studio Trigger


不同風格的會變成這樣

Zdzislaw Beksinski + Hiroshi Yoshida












這個網誌中的熱門文章

Google 專案管理認證如何準備?值得考嗎? Project Management Professional Certificate

Google 2021年開始在 Coursera 上開設了一系列以科技業就業為導向的 Certificate 課程,我今年6月底到7月初,大概花了2週的時間,從早學習到晚,取得了 Google Project Management Professional Certificate 這個認證,覺得可以來談談這個認證,並且推薦年輕朋友考一張看看。 結論先講 這是一個不錯的初階認證課程,有系統、有難度。我覺得上過這個課,對於專案管理的流程、文件、軟技能都有基礎的認識,應該需要知道的細節都有基本的知識,重要的文件都自己寫過一次,建議生涯初階的人可以考看看。從用人主管的角度來看,我覺得這個認證是有效的。 什麼是 Certificate Certificate 在美加的教育環境中,就是一個最基本的職業文憑,很多大專院校,會同時頒發 Certificate、Diploma與Degree, Certificate  差不多就是一年的課程(Diploma 2年、Degree 4年),一般學校都要求10-30學分左右的課程份量,大概是150到500小時的學習。一張Certificate通常有發證單位的背書,證明具有尋求該職業最低的要求,但不是「大學學歷」。 Google 每一張 Certificate 都是說 Prepare for an entry-level job as a ________. 然後在課程中會引導學員了解這個證書也不是 讓你幻想拿到之後就可以到跨國外商 PMO 管理大型專案 ,而是只能從各種 助理工作 開始。 Google Certificate 要求 6 個月的學期,課程安排大概是27週左右,每週要求10小時左右的學習,我覺得大概有台灣的大學10-20學分的份量(看是什麼大學),大概比台灣很多大學的「學分學程」少一點。 Google Project Management Professional Certificate 難不難? 我先簡單說一下我的背景,我沒有留學美國的經驗,但Toeic裸考9xx分,並且有在外商參與各種大小本土與跨國專案的經驗。 對台灣人而言,這個課程有 三個難度 ,一個是課程難度、一個是語言難度、一個是個人時間管理難度。 課程難度 :課程難度我覺得還好,如果都是用中文上課,台灣國中會考5B的學生還算可以應付。 英語難度 :加上英文之後,就

Kaggle 競賽一點也不難!用 Excel 樞紐分析也可以完成你的第一次數據競賽!

資料科學社群中有一個很重要的平台 Kaggle,裡面從競賽、資料分享、經驗交流到社群都有,因為經營太成功了,後來(不意外地)被 Google 買下。我之前在參加 Google 數據分析師專業認證課 時,課堂中有要求要開一個帳號,並且上去問答。問答完之後,就會看到你的帳號狀態中,顯示「你只要上傳一次數據競賽」就可以脫離新手村。 衝啊! Kaggle 中有非常多的數據競賽,而且有些競賽的數據集非常好,獎金也很高。不過菜鳥先不要想那麼多,也做不了這麼高深的比賽。許多人都推薦,Kaggle 競賽可以先從 Titanic 鐵達尼競賽 開始。這是一個沒有獎金,只有評分與排名的競賽,而且資料集非常單純,你不會寫程式、不懂機器學習,即便用Excel這種試算表也可以獲得不錯的成績。 什麼是 Kaggle 競賽 Kaggle 上有大大小小的競賽,從給錢的、給(虛擬獎牌)到老師自己在課堂上舉辦的都有,參加辦法其實很簡單,許多比賽都會將一份資料集拆成兩個: 訓練集 Train Dataset,讓你實際去訓練機器學習或者用各種你會的方法來跑模型的資料集。 測試集 Test Dataset,通常與訓練集來自同一個資料庫,就像富春山居圖分成兩塊一樣,Test Dataset 是讓你去測試你的模型是否正確,會比訓練集少一些欄位,然後把你的結果上傳到競賽中,競賽就會與原本的資料比對,吻合程度越高就代表你的模型越好。 鐵達尼資料集 Kaggle上的 鐵達尼資料集 來自真實的數據,但與真實完整的欄位有一點點落差,這些欄位包含: survival 倖存與否 pclass 艙等 sex 性別 Name 姓名 (包含頭銜) Age 年齡 sibsp 手足、配偶人數 parch 父母、子女人數 ticket 船票編號 fare 票價 cabin 艙房編號 embarked 登船口岸 但這些資料集中有嚴重的資料疏漏,所以需要用各種技巧來處理。 資料分析 在Excel有很多方式可以分析這個檔案,第一是採取 Logistic Regression,這樣不用針對數據的特徵有任何分析,直接硬算即可。 另外一種方法就是針對數據的特徵分析之後,你可以不斷透過樞紐分析往下找到各種特徵。 當Rose與Jack要逃下船時,誰的機會比較大呢?我們先從性別來看,可以很快發現最明顯的特徵,就是女性大部分都活下來了,

Google Data Analytics 數據分析專業認證介紹

Google 在 2021 年開了5個他們認為低學歷也可以進入網路科技業的墊腳石課程,都是 Certificate 程度,也就是美式求職證照中的最低階。 我先前已經先考過了 專案管理的專業認證 ,這次繼續花大約2周的時間來完成數據分析師 / 資料分析師認證,看看這張證書是否值得推薦。 Google Data Analytics Certificate 結論先講 如果你具有任何一個非數據類的專業(aka良好的大學文憑)或者在工作上累積了不錯的專業知識 (Domain Knowledge) ,這門課可以 提高你的專業知識與求職機會 (前提是你真的 所有作業 都做完哦~~) 這門課的重點是 Data,不是 Business ,主要提供你與 Data 最基本的互動知識,但談不上 Business Analytics ,使用的工具、課程內容重點都不同。 課程難度 Google Data Analytics Professional Certificate 這門課是全英文的,你要全程用英文參與課程、學簡單 Coding,完成作業,語言上有難度。不過與另外一門 Project Management Certificate 相較,我覺得英文要求沒有那麼高,畢竟沒有 Peer Review,等於是沒有對英語寫作的要求。 課程的工具核心有三個,分別是 Excel(試算表)、SQL與R,假如這三樣你都沒學過,也沒有任何寫程式的基礎(這種人現在也不多就是了),可能會有一點點學習上的門檻,但如果你已經有任何一個程式的基礎,相信不會太難。 課程安排 這個專業認證課由8個課程組成,課程架構與大部分數據分析、商業分析的都差不多,Google 這邊使用的為 Ask、Prepare、Process、Analyze、Share與Act六大步驟,除了第一個課程是數據分析快速入門外,後面5個就是Google數據分析的前5個階段,然後第7個課程專門講R,第8個是專題作業。 Ask 階段主要是定義商業問題與需求,Prepare階段讓你了解數據、欄位等特性,規劃資料需求並且取得資料。  Process階段就專門談資料的清理、整理,花了很多時間在談清理的樣態、手工清理與SQL清理,令人驚訝的是完全沒有介紹 OpenRefine 。 Analyze階段講得比我想像的要少,重點還是在試算表與SQL的使用,完全沒有提到商